Before you start
There are many publicly available spatial datasets that can be downloaded using R. Programming data downloading using R instead of manually downloading data from websites can save lots of time and also enhances the reproducibility of your analysis. In this section, we will introduce some of such datasets and show how to download and process those data.
Direction for replication
Datasets
No datasets to download for this Chapter.
Packages
- Run the following code to install or load (if already installed) the
pacmanpackage, and then install or load (if already installed) the listed package inside thepacman::p_load()function.
if (!require("pacman")) install.packages("pacman")
pacman::p_load(
stars, # spatiotemporal data handling
terra, # raster data handling
raster, # raster data handling
sf, # vector data handling
dplyr, # data wrangling
stringr, # string manipulation
lubridate, # dates handling
data.table, # data wrangling
tidyr, # reshape
tidyUSDA, # download USDA NASS data
keyring, # API key management
FedData, # download Daymet data
daymetr, # download Daymet data
ggplot2, # make maps
tmap, # make maps
future.apply, # parallel processing
CropScapeR, # download CDL data
prism, # download PRISM data
exactextractr # extract raster values to sf
) - Run the following code to define the theme for map:
theme_set(theme_bw())
theme_for_map <- theme(
axis.ticks = element_blank(),
axis.text= element_blank(),
axis.line = element_blank(),
panel.border = element_blank(),
panel.grid.major = element_line(color='transparent'),
panel.grid.minor = element_line(color='transparent'),
panel.background = element_blank(),
plot.background = element_rect(fill = "transparent",color='transparent')
)